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ERGODICITY, CONTINUITY, AND ANALYTICITY
OF COUNTABLE MARKOV CHAINS

V.A. MALYSEV AND M. V. MEN'SIKOV

ABSTRACT. General criteria are given for the ergodicity, recurrence, and transience
of countable Markov chains. Conditions are given for the continuity and analytic-
ity, in the parameter, of the stationary probabilities of families of such chains. A
complete classification is obtained for a certain class of random walks in Z7, for
n =23, and sufficient conditions are given for ergodicity and transience for
arbitrary n. All criteria are closely connected with the well-known criterion of
Foster for the ergodicity of Markov chains. For the consideration of concrete
cxamples, a wide generalization of this criterion is given in terms of semi-
martingales.
Bibliography: 26 titles.
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INTRODUCTION

In the present paper we give general ergodicity, recurrence, and transience
criteria for countable Markov chains, and also conditions for continuity and
analyticity, in the parameter, of stationary probabilities of families of such chains.
These criteria are closely connected with Foster’s well-known criteria [23] for the
ergodicity of countable Markov chains. For probability theory they are developed
in the most natural way in the language of semimartingales or, which is equivalent,
in the language of “test” functions. These functions are also called Ljapunov
functions. In [3] by means of these functions ergodicity and stability problems of
diffusion processes are studied.
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These general criteria turned out to be necessary for the classification of random
walks in Z%, = {(z),~..,2,): z > 0, integral} of a definite form (maximally
homogeneous and with restriction on the jumps (cf. below)). The solution of the
latter problem is our main purpose. Besides, on it we can test the effectiveness of
the general criteria for Markov chains and martingale sequences developed in the
paper.

The significance of the problem is explained, in particular, by the following
circumstances:

1. The difficulties in obtaining existence and uniqueness conditions for solutions
of partial differential or convolution equations in domains with edges are well
known. In the language of probability theory (for stochastic operators) this prob-
lem reduces to the classification of the corresponding Markov chain. Here the
corresponding operator is not a Fredholm operator; however, the probabilistic
character of the problem enables us to penetrate deeper than in the case of general
functional equations. For a detailed exposition of the results concerning general
functional equations in Z7,, see [7].

2. Many nonstandard Markov queueing problems can be presented in the form
of random walks in some piecewise linear domain on the discrete lattice Z%, with
various conditions on the faces. (A queueing problem is said to be Markov if all
parameters are exponentially distributed.) Examples for such problems can be
found in {4], [14] and [15].

3. A connection with the quantum n-body problem is obvious, where all
difficulties are basically surmounted for small », which also holds in our problem
(for more detail, see [7]).

However, the general criteria obtained in the paper go beyond the scope of the
problem of a random walk. For instance, we obtain necessary and sufficient
conditions for the continuity of stationary probabilities and also sufficient condi-
tions for the analyticity of a family of Markov chains.

Let us now go into the content of the work. In §1 of Chapter I we consider a
sequence of real random variables S, S, ..., concerning which we assume that
S, = const, and there exists a constant 4 such that for all n =1,2,... we have
|S, — S,_1| <d with probability 1. From the sequence {S,} a subsequence { Sy}
is selected, where N, is a random index sequence such that |N;, — N,_,| < r with
probability 1 for some r > 0 and any i. We claim that, according as the sequence
{ Sy} is a strict supermartingale or submartingale, the mean first passage time of a
fixed boundary by the sequence {S,} is either finite or infinite.

The fundamental theorem of §2 is Theorem 1.4, which is a generalization of
Foster’s famous theorem concerning the necessary and sufficient ergodicity condi-
tion for countable Markov chains [23]. It is formulated in terms of the existence of
a so-called “test” function.

In Chapter II we consider a homogeneous irreducible aperiodic Markov chain L
with discrete time and state set Z7, = {(z}, ..., z,): z; » O, integral} concerning
which the homogeneity conditions and the boundedness condition of jumps are
assumed to be satisfied (cf. the definitions in §1 of Chapter II). We assume that we
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can classify the random walks in Z7, where m < n — 1, in the sense of ergodicity
and transience, and for ergodic walks we can calculate stationary probabilities.
Then in R} we give an algorithm for the construction of a vector field V. In terms
of the existence of a “test” function f(a), « € R}, satisfying certain conditions
concerning V, sufficient conditions are given for the ergodicity and transience of L.

In §2 of Chapter II an explicit construction method for the “test” function f(a) is
given, which enables us to classify random walks in Z7, for n < 3. By means of V
we construct a deterministic process ¥(r) and prove that ergodicity of L and
finiteness of the first passage time of the origin by the process ¥(¢) are equivalent.

In Chapter III we consider a family of homogeneous irreducible aperiodic
Markov chains {L"} with discrete time and countable state set 4 = {0, 1,... };
v € D, where D is an open subset of the real line. Under the assumption that the
transition probabilities are continuous in the parameter, we give a necessary and
sufficient condition for the continuity of stationary probabilities. This condition is
close to the compactness of the distribution family. In §2 of Chapter III sufficient
conditions are given for the continuity of stationary probabilities of the family
{L"} in terms of “test” functions.

In §1 of Chapter IV we consider the Markov chain family {L"} on the set
A=1{0,1,...} for » € D. We denote by %X(A4, Z) the Banach space of real
countably additive measures on (4, X) with norm equal to the total variation (Z is
the ¢-algebra of all subsets of 4). It is easy to see that ¥(A4, =) = /,(4). Let B(%X) be
the Banach algebra of bounded linear operators in ¥(A4, ). To L* there corre-
sponds an operator P, € B(X) with norm 1.

In Theorem 4.1 sufficient conditions are given for the existence and analyticity
of r(v) = lim,_,  P"(v)x, where x belongs to some set M C %(4, =) and P(»)
depends on v analytically.

In §2 of Chapter IV we give sufficient conditions for the analyticity of the
stationary probabilities of a family {L”} of countable chains in terms of “test”
functions. The proof of this theorem is based on Theorem 4.1.

In §3 of Chapter III and §3 of Chapter IV the results of §§1 and 2 of those
chapters are used for the study of continuity and analyticity of stationary probabil-
ities of the random walk family {L”} in Z7, .

CHAPTER I. ERGODICITY CRITERIA FOR COUNTABLE M ARKOV CHAINS
§1. A lemma for semimartingale sequences

Let us consider a sequence Sy, S),... of real random variables, concerning
which we shall assume that S, = const and there exists a constant d such that for
alln=1,2,... we have

1S, —Sail<d (1.1)

with probability 1.
Denote by ¢ the first passage time of the boundary b, i.e. t = 0 if S, < b, and
t=nif S, <bbutS,>bfori=0,1,...,n~ 1.
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LEMMA 1.1. If for some ¢ > O the inequality*
M(S,,/Sn_l, P o) ,._1 — € (1.2)

holds for all n with probability 1, then for any 8, < € there exist constants ¢ and
8, > 0 such that for any n

P(S, > —8n) < c-exp{— b1},
M) < . (1.3)

In other words, the mean first passage time of b for a uniformly strict semi-
martingale is finite.

PROOF. Set y, = S, — S,_,. It follows from the generalized Tchebycheff inequal-
ity that

Ps.>0=7(3 b5, < =K M [exp 31 0 ] (14
=1 =l

As follows from condition (1.1), inequality (1.4) is true for any A > 0. Let us
estimate M[exp{hZ7 y,}]. Let h be subject to the condition 0 < 4 < 1/d. Then we
have

3 5
exp{hy,} << 1 + hy, -+ Tz“(hyk)',
M{explhaliSe Su - .. Sy < M{1 - hyy+ LSy S, o LS,
< 1 —he + —;- R

with probability 1. Therefore, choosing A sufficiently small, for some § > 0 and
any k we have

M{exp{h-y. 1Sy, Si. . . .. Sk} Cexp{—8) (1.5)

with probability 1. It follows from (1.5) that

[eXP 5 ] _ [ 1 exp {hyk}]

k=l

= M{ I'I exp {hy,}- M {exp {hy, }/S,. . . .,S,._x)]

M [ T exp {gy)-exp {—6}].

k=1

* Editor’s note. In the Russian literature, MX denotes the expectation of X, and M(A/B) denotes the
conditional expectation of A, given B.



ERGODICITY OF COUNTABLE MARKOV CHAINS 5

Analogous calculations show that
n
M [exp {h ;‘ y,,}] < exp{— néb}.
=i
Setting ¢ = exp{ — hS,}, we obtain

P(S,>0)< c-exp{—n8). (1.6)
Take an arbitrary 8, <e. We introduce a random sequence (S,} by putting
S, = S, + nd,. Then
M(S,./gn—], “ e ey So)‘—gn_l - AI (Sn/Sn—l, e o ey So)
+n61*8n_1_(n—1)61 ~<_8+61=‘-“€1<0- (1'7)
It follows from (1.7) that

P(S,>0)< c;-exp{— nd,) (1.8)
for some c,, 8, > 0 and all n. Therefore,
P(S,>—8n)=P(S,>0)< ¢, exp {—nb,). (1.9)
Consequently, the first assertion of the lemma is proved. Moreover,
M) = 2‘,"”3“ >b, 5,>6, . . ,S1>b, S, <b < }_]l nP(Sa—1 > b).
(1.10)

The exponential estimate (1.3) implies the convergence of the series (1.10). The
lemma is proved.

In the course of the proof we obtained exponential estimates, necessary for the
study of the analyticity of the Markov chain families in Chapter IV. Similar -
estimates are obtained for semimartingale sequences in [25] and [26].

The following lemma sharpens the assertion of Lemma 1.1 in a certain sense.

Let {N;} be a random sequence of positive integers (i = 1, 2, . . . ) such that for
some r > 0 and any i we have

<N =N <r 1.11)
with probability 1.

LEMMA 1.2. Assume that for some ¢ > 0 and all i the inequality
M (S,V‘./SN‘_l, SNi . ey So) < SN‘_l—e (1.12)

-2
holds with probability 1. Then for any 8, < e there exist constants ¢ and & > 0 such
that for any n

P(S,>—06n)< c-exp{—dn},
M) < o. (1.13)

In other words, the mean first passage time to b for the random sequence from
which a strict semimartingale subsequence is selected is finite.
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ProOF. Form a random sequence {w;} by setting w; = Sy and w, = S;. The
sequence {w;} satisfies the hypotheses of Lemma 1.1. Therefore, for any 8, <e
there exist constants c,, §, > 0 such that for any i

P(w; > —84i) < ¢, exp {— &i}. (1.14)
It follows easily from (1.14) that there exist constants c,, §; > 0 such that for any i
P(w; > — 8;i —dr) < c;-exp {— §,i}. (1.15)

Consider the event 4, = (S, > —6,n). It follows from (1.1) and (1.11) that

Consequently, taking account of (1.15), we obtain
P(A,)=P(S,> —b,1) < ? P(0p > — bm — dr)
<a Y ewn{—&n).

T3

It follows immediately from the latter inequality that there exist constants ¢, § > 0
such that for any /

P(S,>—08,n) < c-exp{— bn}. (1.16)

As in Lemma 1.1, (1.16) implies the finiteness of the mean first passage time of the
sequence S, to b. The lemma is proved.
Let {N,} be the random index sequence introduced above.

LeMMA 1.3. Assume that for all i and some ¢ > 0 the inequality
MSwdSn_ys « - S) > S, +e (1.17)

holds with probability 1. If Sq > b + dr, then P(t = o0) > 0.
Proor. It is sufficient to prove that for some m there exists ¢ > 0 such that
P(Sp>b, Smp1>b, . . .,S,>b>0. (1.18)
for S, > b + dr. Obviously we have
P(Sp>0b, Sni >0, . . )> l—P( 0 (S, < b)) >1— imp(s,,@).
n=m n=

(1.19)
Analogously as in Lemma 1.2, but reversing the inequalities, we can prove the
existence of constants § > 0 and m such that for any n

P(S, < b) < cexp{— bn}. (1.20)
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The convergence of =7, e %" implies the existence of ¢ > 0 and m such that

NPS, <)< 1—a. (1.21)
n=m
Inequalities (1.19) and (1.21) imply (1.18). The lemma is proved.
For completeness we formulate the following lemma whose proof we omit.

LEMMA 14. If M(S,/S,_\, - . ., So) = S,_y, for all n, then M(¢) = co.

In what follows we shall prove ergodicity criteria for countable Markov chains
and random walks. The results of this section enable us to remove the requirement
that the random walks be Markov.

§2. Criteria for countable Markov chains

Consider a homogeneous Markov chain L with discrete time, countable state set
B = {0, 1, ...} and transition probabilities p,,, i, j € B. We assume that L has a
single essential class of states and it is aperiodic. By p; we shall denote the
transition probability from i to j in n steps ( py‘. = py)-

On the set of nonnegative integers let an integer-valued positive function k(i) =
k; be given. On the state set B define the Markov chain L by the transition
probabilities 5, = p,.j’."' (i.e. the transition probability of L from the state i to the
state j is equal to the transition probability of L from i to j in k; steps).

THEOREM 1.1. If there exists at least one recurrent state in E, then L is recurrent.

PRrOOF. Let the state j of L be recurrent. Then 271 B = oo. We write the terms
of this sum in detail:

~r - -~ -~ .
p/l = . . 2 . pi"xpiniz ¢ & . p‘r—xl’
TR PRIt S
- y Y
Pijijt, =, Z,' Pt Pty « v . Ptegiy—1oipgy s
P k('l)—l

Therefore 372, p; will consist of different products p, Pii, - - - P j»> Which differ
from each other in either the order of factors or the factors themselves. The sum
2. 1p;; can be represented in an analogous way, and it contains all the terms of

n=1
)

272, b Consequently 27°_, p;/ = oo, and L is recurrent. The theorem is proved.

r=1

The following theorem is well known.
THEOREM 1.2 (see [8]). In order that the irreducible Markov chain L be recurrent it
is sufficient that there exist a sequence {y;} such that

ipuylk Y igA, Y=+ o as i oo, (1.22)
I-

and the set A be finite.
The following theorem generalizes Theorem 1.2.

THEOREM 1.3. In order that the irreducible Markov chain L be recurrent it is
sufficient that there exist a positive integer-valued sequence {k,} and a sequence { y,}
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such that

53 Pffyi LY, €A, yi>» as i— -, (1.23)
=0

The set A is finite and the chain L formed in the way described above is irreducible.
PROOF. Let the hypotheses of the theorem be satisfied. Then

o

zp‘,y, Y, (@A, y;—> x as i— =<.

=
By Theorem 1.2 this reduces to the recurrence of L, and, moreover, by Theorem 1.1
to the recurrence of L.

THEOREM 1.4. The irreducible aperiodic Markov chain L is ergodic if and only if
there exist a positive sequence { y;} and an integer-valued positive sequence {k;} such
that for some ¢ > 0 and a finite set A the following system of inequalities holds:

i ”y, Yy, —ek;,, (¢4,
3 iy, < w0, Q€A (1.24)
1=0

Proor. We prove the sufficiency. As in Theorem 1.1, we shall consider the
Markov chain L with transition probabilities 5; = p,-}". The inequalities (1.24) can
be rewritten in the following way:

— ek, igA.

'!:H

5,y,<:~£ i€A (1.25)

TMB

Set max;c .22, p;»; = A. By recurrence we define

Yyt = me'y:w (1.26)

It follows from this definition that y* > O for any i and n. We have
V< y—ke ich;
Y <A, Q€A

y= 3 Elj!/,z = 2;;;'1.‘/? + 2 Eiiy‘- < A Z;pu T 2_. pl!(ul — k;e)
=0 1€

jEA IEA
= A AP;,T!/ 2 pu’// 2;’!'/' '7'82 pukl

< gD AuTem—-agp‘, "
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where
r;‘sax ki =4y ,215" = Pia; ,EE P = pia.
We prove the following inequality by induction:
yi <yl = i+ ekl)~ei Pl k. 1.27)

We assume that this inequality is true for n = m, and prove it forn = m + 1. We
have

ST B e — e 31 R,
/=0
g = 2 WY = E pij [»"T—' + pf i+ eh)—e E,»,‘gk[]
= =o

=4 T ) —e B PRy,

as asserted.
From (1.27) we obtain

no__ n oo __
RS+ A +el) Y pia—eY) Y ki (1.28)
=1 =1 f=o
Let &, &, ... and &, £, ... be sequences of random variables corresponding to

the chains L and f:, with §; = Eo = { Then
MER(EN = I;pfik,-.

Inequality (1.28) implies that

n - y2 ¢ n_‘ -
Ty> — - M .
ZP‘R vl ey 2.‘ (k&)

Take an arbitrary ¢ > 0. Then

= PEEA=PIE e (T e <o)l £ PlE AN (SrE)>er))
P, (£, €A4)=P 1(&,6 4Hn (2-_3[ k()< cr)l + Pl(g,EA) N (Z_“lk(gl)}cr)}
Write

n

Bi= 3 PlE €1 n( " k(E) < cr)};
r—=1 =1

n

B> — g e M G — zlp{(E,eAm(gk@,»”)}.
r= 1=l

r=l1 =

Y % E,)— 2 P(2k(§'o > cr).
]

r= o=l

(1.29)
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There are two possibilities:

2 Mk E)) o
=| A, — 8L
L. 'lll_l:?o ; n > -+ e
for some ¢, > 0, and
L Mk &) ,
2. Iim = gLk L
n-+oo n €

Consider the first case:

A e

WY M@EE)—n
1

_ B  h4eh A} ehy Led e
lim —= > lim = > —1"— >0.
neo n n-oo n A+ ek 1
Consider the second case. Then there is an ry such that for any r > r,
3 Mk E) it o
= < 2lhtem) (1.30)

r £

By the Tchebycheff inequality we have

' M(,E k (@)) }] M (k &)
P (2 kE)> er) 3
=1

cr

Using (1.30) and (1.31), we obtain

B4 1 ME) ;}M(ku»
n Ater n v (J+e/l) E ( (§ )__z

r=1
Ty M (& (E
L& e 1 rg. (k &)
ALeh, n h+eky - n cr
r=1
i Y MEE) M (k
L r’g L A 2] (k €)
n cr T A+ ell n 2
r=rg-=-1 r=l1
€ _ 1 (r—rie
ALk, n c :
Consequently,
lim =% » —2 — — %
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Since as ¢ we can take any positive number, by choosing it sufficiently large, we
obtain

B
im ~ >8>0

——

3

for some §; > 0.
In both cases we have obtained that

for some § > 0. The quantity
- frln(grs<e)
B= 3 PG ean(Re@<e )|

can be represented in the form of a sum of products PiiPii, - - - Py; (J € A), as has
already been done for the expansion X%, p; in the proof of Theorem 1.1.
Moreover, the number of factors in each term of this sum does not exceed [cn] + 1,
and these terms differ from each other by either the order of the factors or the
factors themselves. The sum Z!I*! p” can be represented in an analogous way,
and will contain all terms of the expanion of B;. Therefore, for any n we have
[en]41
2 Pia > B (1.32)

It follows from (1.32) that

{nc)+1

S _
lim ——=
n-> lllcl+l > +ln*a n >C+l
(1.33) implies the ergodicity of the irreducible Markov chain. By the same token,
the sufficiency of the hypotheses of the theorem is proved.

Now we assume that the chain L is ergodic. Set k, = 1,i =0, 1,.... Then the

fundamental theorem of [23] implies the existence of a sequence { y,} such that all
the hypotheses of the theorem are satisfied. The theorem is proved.

> 0. (1.33)

THEOREM 1.5. In order that the irreducible aperiodic Markov chain L be ergodic it
is sufficient that there exist an integer-valued sequence {k;} such that

Sup k" = k < °°, inf k‘ > 1,

i=0,1,2,... i=0,1,2,...

and a positive sequence {y;} such that for some ¢ > 0 and some finite set A
2 ity < igA;

p p‘;y, < o, i€A. (1.34)
=0
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The proof follows from Theorem 1.4 in an obvious way.

Assume that on the set of nonnegative integers a real functiony = {y,} (i € B)
is given in such a way that y; > 0 for any i, and for some d > 0 the inequality
|¥; — ;| > d implies that p,; = 0, where the p;; are the transition probabilities of L.
On the same set B let a bounded integer-valued positive function k; (i € B) be

given, where sup,-p k; = k < oo. Under these hypotheses we have the following
theorem.

THEOREM 1.6. Assume the positive sequence {y;} is such that
0o k. .
) iy >y ke (1.35)
i=o

for some &, ¢ > 0 and for all i belonging to the nonempty set A, = {i: y, > c}. Then
the Markov chain L is transient.

Proor. It follows from (1.35) that for any N > 0 there exists an n such that
¥, > N. Consider the sequence £, §,,... of random variables constituting the
chain L. Let £, = ay > ¢ + dk. From the sequence {£} let us form the sequence
{S;} by putting S, = y(§,) = y. . Denote by ¢ the random time of entrance of the
sequence S, to ¢. From the sequence {£} we also form a random integer-valued
sequence {N,} by putting

/Vo = k(go) = kao: N; =N + k(;)
Then (1.35) implies that
M (Sn,/Sn;_,>¢c)> Sy, +e (1.36)

i—1
with probability 1. Applying Lemma 1.3, from (1.36) we obtain that 1 = oo with
positive probability. This means that the first passage time of the process {£,} to
the set B\ A4, is infinite with positive probability. Consequently, the chain L is
transient. The theorem is proved.

THEOREM 1.7. Assume that the positive sequence { y;} is such that

3 piy; > y; (1.37)
;=0

Jor some ¢ > 0 and all i belonging to the nonempty set A, = {i: y, > c}. Then L is
not ergodic.

The proof is easy if we use Lemma 1.4.
CHAPTER 1. ERGODICITY OF RANDOM WALKS
§1. Sufficient conditions for ergodicity and transience of
random walks in Z7,

Consider a homogeneous irreducible aperiodic Markov chain L with discrete
time whose set of states is the set Z, = {(z, ..., z,): z; » 0, integral}. Let
Pa’;; (a, B €Z%) be the k-step transition probabilities of L, and M%(a) =
(MKa), . .., M¥(a)) the vector of the mean jump from the point a in k steps;
Pag = Pugs M'(a) = M(a).
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By A={i,...,i{} we denote a k-tuple of natural numbers from 1 to n
(A<k<ni<---<i)Let Ry ={(r,,..., 1) r, >0, real}. By B* we de-
note an arbitrary face in R7, i.e.

As{L,2, .. .0}, B ={(ry, . . .,r)iri >0, i€A; r;=0, ig A}
for some A C {1, ..., n}. By |A| we understand the dimension of A. Set

Bi={(ry, . . ..ra):ri>c i€A; ri<t, igA).

In what follows, we shall consider only bounded maximally homogeneous
random walks in Z7,, i.e., random walks satisfying the following conditions:

HOMOGENEITY CONDITION: There exists ¢ > O such that for any A, for any vector
a=(a,...,a,) such that a; >0, 1 <i <n, and a;, =0 for j & A, and for all
a € B2 N Z, we have

Pag = Pata.pta (ﬁ € Zi)

BOUNDEDNESS OF JUMPS. For any a the number of B such that P.p 7 0is finite.

By the homogeneity condition, this is equivalent to the following: there exists
d > O such that p,g = 0 for ||a — B| >d.

For any face B* (A # {1, ..., n}) we choose an arbitrary point a € Z". N B*
N BA. Through this point we draw a plane C* c Z" of dimension n — IA],
perpendicular to B*. We consider the Markov chain L? with set C* of states
(which we shall call induced by L) and one-step transition probabilities

APap == Pap + 2 Pag’, &, SE CA,
p'#=8

where summation is performed for all 8’ € Z7,, such that the straight line connect-
ing B’ and B is perpendicular to C*. It follows from the homogeneity condition
that the definition of L* does not depend on the choice of the point a € Z7, N B*
n BA.

In the sequel we consider only chains satisfying the following condition A:

CONDITION Al. For any A the chain L* is irreducible and aperiodic.

If the chain L* is ergodic, let IT*(y) (y € C*) be its stationary probabilities. We
introduce the vector v® = (v, . .., v}), by setting

oA =0 for i¢A;
vh= D) nt () M;(y) for i€ A.
yec®
For A = {1,2,..., n} we set
vt = M (), where € Br{c'-'-’--"-"‘ nzs.

In this way we have a finite collection of vectors V2, (From the boundedness of
jumps it follows that max||v*|| < «.) For nonergodic chains L* the vectors V' * are
not defined.
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CONDITION A2. We have ||[v*|| =0 for all A for which the vectors v® are
introduced.

Now we formulate and prove an assertion relating to countable Markov chains.
Let us consider an arbitrary homogeneous irreducible aperiodic Markov chain (0]
with discrete time and countable state set B = {b}. Besides, for every point b € B
let a probability distribution F, be given on the set of real vectors of dimension k
such that the random variables corresponding to F, are uniformly bounded for all
b € B. Let M, denote the mean value of F,. Let a sequence of random vectors
(Pn> &) = @,(§,) be given such that £, §,, ... is the initial chain Q and for any
given § = b, i=1,2,..., the random variables ¢, i = 1,2,..., are indepen-
dent and have distribution functions F,,.

LEMMA 2.1. Assume that the chain Q is ergodic and &, = a at time t = 1. Then for
anye >0
A

where v = 2,y M@, (the =, are stationary probabilities of Q).

é (&) — nv

i==]

>ne)—>0 asn-— oo, 2.1)

PrROOF. We prove that

M@, E)) >V as n - oo, 2.2)

Indeed, ;
M(9,E,) = 2 M{@,E,)E, =b}-P(&, =b).
M {‘pn (Ea)/gn = b) = Mb’ (23)

It follows from the ergodicity of Q that P(§, = b) »II, as n —» co. Taking into
account that sup, ¢ 5l|M,|| < oo, we conclude that M(gp,(£,)) — v as n — oo. There-
fore, instead of (2.1), it is sufficient to show that for any £ > 0 we have

P(” 3 (pi(gi)‘—ZlM(‘Pl(gi))“>nE)—*O as n->oo. 24)

{li=

Apply the Tchebycheff inequality to the sum of the ith components of the
vectors @,(£,):

P( }"_]cpua,.)—-}"]M((w'm@.-))
i=l

m==]
It follows from the uniform boundedness of the variables ¢/ (£,,) that for the proof
of (2.4) it is sufficient to show that

M [(95,Gm) — M (94 (En)) (95 G —M (9L ED))] >0 (6)

n2e?

D[ 3 (¥ Em) — M (a7, Em)
> ne) < —2= .

(2.5)
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as |i — j| — oo for any 1 </ < k. This will hold in the case where

as [n — m| — oo. The latter assertion follows from the independence of the random
variables ¢, (£,) and ¢,(§,) for fixed £, and &, and the ergodicity of Q. The lemma
is proved.

By means of Lemma 2.1 we can prove the following assertion concerning
random walks. Let £™ be the location of the random walk in the mth step, and let
£%9= q.

LEMMA 2.2. Assume that either L* is ergodic for |[A| <n or A = (1,2,...,n).
Then for any R,, ¢, and 6 > 0 there are a natural number m and an R, > 0 such that
Jor any point a € B,/Q' rR,NZ,

P{IE" —(z - mv )l >me} < 0, & =a. Q.7

PrOOF. In order to apply Lemma 2.1, consider the chain Q* whose states are all
the one-step transitions of L*, i.e. the pairs (4, a) (a, a; € C*). The transition

probabilities of Q* are defined as
0, a A
Pa,a,) 0,00 = j % F
t Pagau a2 = aa-

Let I1, (a € C*) be stationary probabilities of L*, and I, (@ b)e C* x C*
stationary probabilities of Q. It is obvious that

Ta.by = Ny APgp- 2.8)
Let §, = a, £, §,, . .. be the sequence of random variables corresponding to the
random walk L, and let A = (i}, ..., ). We introduce a sequence of random
variables ¢,, by setting
em- em+1 e 1
q:'m = (s:n,.’_l_gcnn ~T,‘I_ST,9 . s . 1§’lr;+ _Eyl)-

This random sequence satisfies the hypotheses of Lemma 2.1. Using it, we obtain
the assertion of Lemma 2.2.

On the set Z”, let a real function f(a) (@ € Z7,) be given such that the condition
|fy — fg| > d implies that p,, = 0 for some d > 0. Write

Br={(xy, . . .,x):x, >R, i€\}

LEMMA 2.3. Assume that the chain L* is not ergodic, and there exist a set B}Q\I r, and
a function m(a) defined on the set B,‘,}IRZ and a function m(a) defined on the set
(Bx.\ Bgr) N Z, and taking values in the set of natural numbers such that for all
a e (B,f,‘l \ B,‘Ql r) N Z', the inequality

Y e —fal —¢ 2.9)

pez]
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holds for some ¢ > 0, and
sup m(a) =m< oo, (2.10)
a€(BR, N8R, p, )N}

Then there exist a set B{Q‘ and a function n(a) (a € B,‘: , taking values in the set of
natural numbers such that for all a € B,‘? N Z7, the inequality

2 P fe —fa< —& .11

ﬁGZ

holds for some ¢, > 0, and

sup  n(@) =n< co; n(@)=m(a), a€BRNBRxr,.
aeagnzj;_

PRrROOF. Let £, = a, £, §,, . . . be the sequence of random variables correspond-
ing to the chain L. Form the random index sequence N, by setting Ny = m(ay) and
N, = N,_,+ m(_,) (for a € Z7 \ BR &, We complete the definition of m(a) by
setting m(a) = 1). The sequence §, forms a Markov chain L. (82 of Chapter I deals
with such chains in more detail.) LA is the Markov chain induced by L on the state
set C. It is obvious that if {£*} is the sequence of random variables corresponding
to L*, then the sequence {gN} corresponds to LA The nonergodicity of L* implies
thai of Z*. Therefore, for any ¢ > 0 there exist R > R, and ¢ > 0 such that for all
r with (R — R))/m >r > t, we have

P(E €Bhzr)>1—o, @2.12)
provided that §, = a € Bgg,. Taking account of (2.9), from (2.12) we obtain that
MIFE)—F &) = MIFE) —F Gt EBAR) P (5 -1 EBAR)

+ M{f E) — FE 1)1 € BRr.} P (&1 € BRir,) < dmo —e (1 — o).

Consequently, if o is chosen sufficiently small (then R has to be chosen sufficiently
large), we obtain

MFE)—[E-N< —a
for some o, > 0 and (R — R))/m >r > 1t; § = a € Bpz. Moreover,

M {fE)) —fa—EM E)— [ &)} < tdm—o (r—1).
Therefore, for sufficiently large r we have
MIFE)N —fl@) < —md —e, @.13)
for some ¢, > 0. The inequality
M{fGEO} < sup_ M EN 4 md (2.14)

is obvious. Therefore, for sufficiently large k&

M{fE)}—fa < —5&1 (2.15)
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Inequality (2.15) is equivalent to (2.11) if we put n(a) = k fora € B,’QRz N Z%,. For
a € (B \ BRg) N Z', we set n(a) = m(a). The lemma is proved.

We have previously introduced a finite collection {v*} of vectors. To each point
a belonging to a face B* such that L* is ergodic (such a face B* will be said to be
ergodic) we assign the vector v(a) = v*. For the points a € B{h2--:1) we set
v(a) = v{*%:-+")_ In this way we obtain a vector field ¥, which may not be
defined on certain faces.

CoNDITION B. For some 8, b, p > 0 there exists a function fa) (a € R’}) having
the following properties:

1. fla) >0, a€R%.
2. f@—fPB) < blla—P|l, a BeRL.

3. For any A such that L" is ergodic and for A = {1,...,n)and all a € B* 0

B,
->
fl@+v(@)—fl@)< —38.

CoNpiITION B'. For some 8, b, t, p > O there exist a function f(a) (« € R%Y)and a
nonempty set T C R satisfying the following conditions:

l. fl@)>0, a€RY.

2. flay—fB) < blla—Bl, o BER:.

3. fla)>t, a€T;

f@<t a€RiNT.

4. For any A such that L® is ergodic and for A = {l,...,n}and all « € B*n
B;}, N T we have

fla+v(@)—Ff()>6.

THEOREM 2.1. If the vector field V satisfies condition B, then the random walk L is
ergodic. If condition B’ is satisfied, then L is transient.

PROOF. Assume that a function f(a) (« € R}) satisfying condition B exists. As
follows from Theorem 1.5, for the ergodicity of L it is sufficient to show the
existence of a function m(a) (a € Z7,), taking values in the set of natural numbers,
such that

sup m(a) =m< =
aezq_

and for all « € Z7,, except some finite set, the inequality

Z m:[(sa)fﬂ—fa<"‘31 (2.16)
pez
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is satisfied for some e, > 0. Let A = {1, 2, ..., n}. It follows from Lemma 2.2 that
for any ¢, 0 > O there exist m® and R* such that inequality (2.7) is satisfied for all
a € B},h. Therefore, if we take e and o sufficiently small, and take account of the
boundedness of the jumps of the random walk and the properties of the functions f
(condition B), we obtain that for any a € Bps N Z7, inequality (2.16) is satisfied
for some ¢, > 0 if we set

m(a)=m* for a¢€ B;A nzi.

We continue the construction of m(a) (a« € Z7,) by induction. Assume that for all
A, |A| = k < n, there exist sets Bix and a function m(a) with values in the set of
natural numbers such that

sup m(a) < oo
( U BR \)nz_,_

and for all a € (U |k BA) N 2% inequality (2.16) is satisfied for some e, >0.
Take A, such that |A,| = k — 1. It follows from the definition of the sets BR &, and
B} that there exist R, R > 0, and together with them sets BRA|RA2, such that
BRA'R;‘ < U B (2.17)
Let L} be nonergodic. Then, applying Lemma 2.3 and using (2.17), we conclude
that there exist R*' and a function n(a) with values in the set of natural numbers
such that
sup n(a) < %o,

ael"u
n(@)=m(x) for a€Br'r, N Bpr, NZ]

and

2 P fo—fa< —e @.18)

pezl

for all @ € Bp, and some e > 0.

Let L* be ergodic. In this case we use Lemma 2.2, and obtain the same result as
in the case where L is nonergodic. Sorting out all A with |A| = k — 1, we obtain
that the conditions which we assumed to be satisfied for all A with [A]| = k will
also be satisfied for all A with |A| = k — 1.

Hence, we have proved by induction that for all A such that |A] = 1 there exist
sets B2 for some R* > 0 and a function m(a) with values in the set of natural
numbers such that

sup m(a) < oo
aE U BR A nZ +

and for all @ C U 5=, Bix inequality (2.16) is satisfied for some e, > 0. This
completes the proof of the ergodicity of the random walk, if we take into account
that Z%, \ U 5, Bax is a finite set.
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Now assume that there exists a function f(a) (a € R%), satisfying condition B’.
It follows from Theorem 1.6 that for the proof of the transience of L it is sufficient
to show the existence of a function m(a) (e € Z%), with values in the set of natural
numbers, such that

sup m{a)=m< o

and for all @ € T, except some finite set, the inequality

Y PP —fa > (2.19)
BELT

is satisfied for some £, > 0. The proof of the existence of m(a) can be carried out
by induction analogously and in the same succession as in the ergodic case. The
theorem is proved.

§2. Classification of random walks in Z> and Z>,

In this section we give a classification of random walks in Z7% (n < 3) from the
viewpoint of ergodicity and transience. As the results of the preceding section
show, to prove the ergodicity or transience of a random walk L in Z% it is
necessary to classify all induced chains L* of dimension less than n, and to
calculate the vectors v® introduced previously for the ergodic chains L*. Then for
the vector field V corresponding to {vA} we have to construct a function f(«)
(a € Z",) satisfying either condition B or condition B’ of §1. A method is given for
constructing this function, which also enables us to classify random walks in Z7,
forn < 3.

The vector field ¥V constructed above was defined only for points belonging to
ergodic faces. We extend the definition of V to points belonging to nonergodic
faces. To the point x € R} we assign the vector v(x) = v* if and only if the
following conditions are satisfied:

1. The point x belongs to the closure of B, (2.20a)

2. x + 8 € R% for all sufficiently small § > 0. (2.20b).

We note that the field ¥ may now be multi-valued. Since it is difficult to study
the cases of zero recurrence of random walks by the method applied below, we
shall assume the following condition to be satisfied.

CONDITION A3. v® # 0 for i € A.

As the following theorems show, in this case all chains will be either ergodic or
transient for random walks in Z" , where n < 3.

Letn = 1.

THEOREM 2.2. If o!) = M(a) < 0 (a € B!M), then L is ergodic. If ("} > 0, then
L is transient.

This result is well known; therefore we omit its proof, although it can be carried
out easily by the method of “test” functions.
Letn = 2.
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LEMMA 2.4. The vector field V constructed as above is nonempty and single valued
at each point x € R2\ 0. Besides, the same vector is assigned to any two points
belonging to the same face BA.

ProoF. To each point x € B{"?) a unique vector v{"?} is assigned. Let x belong
to B{1), i.e. to a one-dimensional face. There are two possibilities: either the chain
Lt s ergodic, or it is transient (the case of zero recurrence is excluded, as follows
from condition A3 and Theorem 2.1). In the first case, the vector v{'} is assigned to
the point x € B{"}, The point x belongs to the closure of B{*2}. However, because
of the ergodicity of L{", by Theorem 2.1 we have v,-(z"z) < 0, and therefore
condition (20b) is not satisfied for the vector {2}, and it is not assigned to the
point x. If LUY is transient, then by Theorem 2.1 we have v{"? >0, and
consequently conditions (20a) and (20b) are satisfied; the (unique) vector v{&2} is
assigned to the point x. The lemma is proved.

For the vector field ¥ in R2 we construct, in a natural way, a deterministic
process () for which V is the field of velocities.

THEOREM 2.3. If for any point x € R2 \ O the first passage time 7(x) of Y(¥) to the
origin is finite when y(0) = x, then the random walk L is ergodic. Otherwise L is
transient.

PROOF. Let 7(x) be finite for any point x € R2 \ 0. On R?2 introduce a function
J(x) by putting f(x) = 7(x). From the properties of ¥ proved in Lemma 2.1 and
from purely geometrical considerations it follows that f(x) satisfies condition B of
the preceding section. Consequently, L is ergodic.

On the other hand, if r(x) is infinite for at least one point x, then we can
construct a function f(x) on R2? satisfying condition B’, which leads to the
transience of L. We shall not discuss the construction of this function, since it has a
purely geometric character.

By sorting out the possible cases, the finiteness condition for the first passage
time of the origin by the process (¢) can be rewritten in terms of the field ¥ in the
form of the following theorem.

THEOREM 2.3'. The process Y(t) reaches the origin in a finite time for any initial
state y(0) = x € R2 if and only if the following two conditions are satisfied:

1. There exists an i) such that v{"* < 0.

2. of") < 0 for every i, such that v{"? < 0.

We remark that in [4] and [12] a classification is given for random walks in Z?
with more stringent homogeneity conditions, where an analogous theorem is
formulated in a more explicit form. However, if these homogeneity conditions are
imposed on L, then ¥ can be calculated in terms of mean jumps, and the form of
Theorem 2.3’ becomes simpler.

Let us pass to the study of random walks in Z?,.

LEMMA 2.5. For every point x € R3 \ 0 the vector field V is nonempty. Moreover,
single valuedness can be violated only on one of the three one-dimensional faces of the
type BUD. In this case two vectors are assigned to the points of BV, Besides, the
same vectors are assigned to any two points belonging to the same face B.
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The proof is based on Theorem 2.3’ and can be carried out analogously to the
proof of Lemma 2.4 based on Theorem 2.2.

If the field V is single-valued, then it gives rise, in a natural way, to a
deterministic process ¥(#) in R3 \ 0 for which V is the velocity field. On the other
hand, if the single-valuedness of V is violated on a one-dimensional face B}, then
we choose one of the vectors assigned to BUJ. In this way we obtain two
single-valued fields ¥, and V,. For each field V;, we construct a deterministic

process Y, (?).

THEOREM 2.4. If for any point x € R} \ 0 the first passage time 1(x) of the origin
by the process Y(1) for y(0) = x is finite for at least one i, i = 1, 2, then L is ergodic.
On the other hand, if at least one process (t) is unbounded for some initial state
Y(0) = x, then L is transient.

PROOF. Let 7,(x) be finite for any point x € R3. As in Theorem 2.3, on R 3 we
introduce a function f(x) by setting f(x) = 7,(x). It is easy to prove that if ¥ is
single-valued, then this function satisfies condition B of the preceding section, and
so L is ergodic. If the single-valuedness of ¥ is violated on a one-dimensional face
B, then the continuity of f(x) is violated on the plane going through the face
BU and the vector v{" >3, However, this discontinuity is easily removable. For
this, the values of f(x) have to be multiplied by the corresponding factor on one
side of the indicated plane. The function thus corrected satisfies condition B, which
leads to the ergodicity of L in this case.

We shall not give a proof for the transience of L in the case where y,(7) is
unbounded, since it can be carried out analogously.

By sorting out all possible cases, the boundedness condition for the reaching
time of the origin for y,(¢) can be rewritten in the form of the following theorem.

THEOREM 2.4°. The process Y(¢) reaches the origin in finite time for any initial state
¥(0) = x € R2 if and only if the following three conditions are satisfied:

1. There exists an i, such that v,-(ll’z’” < 0.

2. For every iy such that vf"*>) < 0, there exists an i, for which ol < 0.

3. Either a) there exists an i, such that LYY is ergodic, and for any i, such that
LU is ergodic we have v{") < 0; or b) the chains L™V, L3, L® are transient. If
v§*3) > 0, then

<l

<
»
w
=
(]
-—-
(7%}
L]
c
~N
[
S
2

and if v{*% < 0, then

3 1
{2,3 J{1.3} 1,2}
Yy ) vt Y

v2{2.3} ei1,3) U(l.z),

(the case where the expression between the absolute value signs is equal to 1 is not
considered).
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The proof of this theorem is of geometric character and uses properties of the
vector field V. We shall not give it here. We note only the case where conditions 1,
2, and 3b are satisfied. In this case, the process {,(¥) (y(0) = x) reaches one of the
two-dimensional faces in a finite time and starts successively intersecting all
two-dimensional and one-dimensional faces, without going to B{"%3). Condition
3b shows that y,(¢) will twist to one side or the other and reach the origin in a finite
amount of time.

We make a few remarks concerning the ergodicity of random walks in 27, for
n > 4. Theorem 2.1 gives only sufficient conditions for the ergodicity of random
walks. As a result of this we can see that for ergodic walks in Z%, n > 4, the
function fa), a € Z7,, satisfying condition B of §1 does not always exist. Ap-
parently, we can also study random walks for higher dimensions by similar
methods. In that case, instead of the deterministic process y(t) constructed in §2
and ergodically equivalent to a random walk, a random process y(?), also ergodi-
cally equivalent to a random walk, is constructed (for points belonging to ergodic
faces it behaves like a deterministic process). With an increase of the dimension of
the random walk, the construction of y(f) becomes more complicated. In the
present paper we have not given the construction of such a process for n > 4. The
solution of this problem presents much difficulty, and one has to use the boundary
theory of Markov processes in the discrete case developed, for example, in [13].

We remark that random walks on a discrete lattice in a half-strip or in Z%, X B,
where B is a finite set, can be studied by our method if certain homogeneity
conditions analogous to those introduced in §1 are satisfied. By the same token,
under the assumption of homogeneity, the ergodicity criteria developed in [21] for
Markov chains in the special phase space Eg can be essentially simplified.

CHAPTER I1I. CONTINUITY OF STATIONARY PROBABILITIES FOR A
FAMILY OF MARKOV CHAINS

§ 1. Formulation of the problem. Necessary and sufficient conditions
for the continuity of stationary probabilities

Recently, problems about continuity of a family of Markov processes have been
studied mainly in connection with queueing systems, for example, in [16] and [17];
the interpretation of the notion of continuity varies. In [17] sufficient conditions are
given for the uniform closeness of the components of a Markov chain by the
method of “test” functions. In the present chapter we study the continuity of
stationary distributions for families of homogeneous irreducible and aperiodic
Markov chains. In §1 we give a necessary and sufficient condition for the
continuity of stationary probabilities, and in §2 constructive sufficient conditions
for the continuity of stationary probabilities in terms of “test” functions.

Let us consider a family of homogeneous irreducible aperiodic Markov chains
{L”} with discrete time and countable set of states 4 = {0, 1,...} for » € D,
where D is an open subset of the real line. By p; (¢, ») we denote the s-step
transition probability from the point i to the point j in L”. Everywhere in this
chapter we assume that the p, (1, ») are continuous in » for all » € p and i, j € 4.
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LemMA 3.1. The p(t, v) are continuous functions of v (v € D) for every natural
number t and all i,j € A.

PrOOF. We prove the lemma by induction. For n = 1 the function p, (1, ») is
continuous in » for any i, j € A. We have

Pur+1.9 =3 pu(l, )y () = T o4, 3.0

It follows from the inclusion hypothesis that the ¢, (») are continuous functions of »
for any k. We have

3 puv)=1 (veD). 3.2)
k=0
Consequently, the series (3.2) consisting of continuous functions converges uni-
formly with respect to » € D, and py(n, ») < 1 for any k, j, n, and » € D. These
two conditions lead to the uniform convergence of the series (3.1). The sum of a
uniformly convergent series of continuous functions is a continuous function.
Consequently, the p;(n + 1, ») are continuous in ». The lemma is proved.
On the set 4 let a family {7()},/ € 4, » € D, of distributions be given, where
D is some open subset of the real line. We have

%mm=1ww»

DErFINITION. The family of distributions {7(»)} (j € 4, v € D) satisfies condition
(A) at the point vy € D if for any £ > 0 there exist § > 0 and a finite set B* C 4
such that

Y omm<e (.3)
JEANBE
for all » with v — py| < 8.
Let the chains L* be ergodic for every » belonging to some neighborhood
U, C D of zero.

THEOREM 3.1. The stationary probabilities m(v) depend on v continuously at v = 0
for all j € A if and only if the family of distributions {m; (v)} satisfies condition (A) at
the point v = 0.

Before proving this we make the following remark. Following Ju. V. Prohorov
[22], we form the metric space D(A). For this we define the distance L(p,, p,)
between any two measures i, and g, on 4 = {0, 1,. .., n} so that convergence in
the sense of this distance is equivalent to weak convergence of measures. The
collection of all measures on A together with the function L(py,, py) forms the
metric space D(A4). In accordance with [22] we introduce the following definition.

DEFINITION. A set T of measures on A satisfies condition (x) if: (x,) the values
uw(A), p € T, are bounded, and (x,) given ¢ > 0, there exists a finite set k, of points
such that p(A\ k,) < eforallp € T.
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In [22] it is proved that for the compactness of T C D(A) it is necessary and
sufficient that (x) be satisfied. For {#(»)}, condition (x) obviously implies condi-
tion (A). Therefore, as a result of Theorem 3.1, we have the following theorem.

THEOREM 3.2. In order that the stationary probabilities m(v) depend continuously on
v for all j € A it is sufficient that the family {m(v)} of distributions be compact in
D(A).

Let us pass to the proof of Theorem 3.1. Let {m(»)} satisfy condition (A) at
v = 0. We prove that #,(») is right continuous at » = 0 for any j € 4 (the left
continuity can be proved analogously). Take an arbitrary e > 0. Condition (A)
implies the existence of a », > 0 and a finite set B* C 4 such that for any » for
which

O<vy, (condition a,)
we have the inequality
2 m<e. (34)
kEAN BE
We prove that for any j € A there is a »,(j) such that for 0 <» <»,())
| 7t; (v) — 7, (0) ] < 10e. 3.5

By the same token, we prove the continuity of the m(») at » = 0. The following

inequality is satisfied for any ¢, i and j:

|7 (V) — 7 (0)| = | pij (2, ¥) — pi; (¢, O)+-71; (V) — p;; (¢, v)+pi; (2, 0) —m; (0) ]
<Py (t, v) — Py (8, 0)] + | 7; (v) — pij (£, V)| + | pyy (£, 0) — 71 (0) |. (3.6)

From the ergodicity of the chains L” and L° for fixed i and j it follows that there is
a t4(») such that for

> 1) (condition a,)
we have

|7y (v) —piy (8, V) | < e,
1pij (¢, 0) —m; (0) | < e. 3.7

Consider the first term on the right side of (3.6). For any T < ¢ we have
Py (6, ) =Pt 01 =| Y puslt —T, ) Py (T, V)

ke BE
+ Y p =T, vpy (T, v)— X pir(t —T,0)py(T, 0)
REAN\ BE ke BE
— Y pult—T,0)py(T, 0)| < , X 1Pt =T, %) py; (T, %)
kEANB® ke BE
— Pt —T, 0)py (T, 0)1|+ Y put—T. v+ X pat—T,0). 38
REAN BE kE AN\ BE

From (3.4) and the ergodicity of L” and L? it follows that there is a #,(») such that
for

t—T >t (W) (condition a,)
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we have

Y put—T, v)< 2,
kEANBE

Y pult—T,0< 2. 39)
REAN BE

Let us pass to the study of the first term on the right side of (3.8),
| 2 [Pt —T, %) ps; (T, v) — pist — T, 0) pyy (T, O)] l
ke Be
= , ‘EBG Put—T,v) Pii (T, v) —pu(t—T, v) (P (T, v)— Py (T, v)
€
— Pt —T, 0)py; (T, 0) + pyy (¢ —T, 0) (p;; (T, 0) — p,; (T, 0))] |

<l 2 Pt —T, %) py (T, ¥) — py (T, v)|
ke Bt

+ Y pu(t —T,0)1py(T, 0)—py (T, 0) |
ke Bt
+ l”"’ (T,v) X} Pt —T,v)—p; (T, 0) X} pu(t —T, 0>|
k€ B® ke B¢

<Py V) Y pu(t —T,v)—p (T, 0) D) piylt —T, 0)
keBe ke BE

+ X 1Py (T, ¥)—py (T, W + X 1P (T, 0)—pyy (T, 0)l.  (3.10)
ke Bt ke Bt

It follows from (3.9) that for ¢ — T > t,(») we have

1— X pult—T,v) < 2,
k€ BE

1— Y pp(t—T, 0) < 2e. @3.11)
kS BE

Since p;(T, ») is a continuous function of » at zero for a fixed 7, there is a
v, = p,(T) such that for

0< vy, (T (condition a,)
we have

| pij (T, V) —p;(T, 0) <e. 3.12)

It follows from (3.11) and (3.12) that

lp;,- (T, %) ) pult—T, V) —p,(T,0) 3 piplt —T,0)| £ 3. (3.13)
ke BE ke B

The chain L? is ergodic; consequently there is a

T=T(B% (condition a)
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for which
max | P (T, 0)— p,; (T, 0)| < e/M, (3.14)
€ 14
20 1py4(T, 0)— pyi (T, 0)| < e, (3.15)
ke Bt

where M is equal to the number of terms in the sum (3.15). The continuity of
Pi(T,v) at v = 0 for a fixed T implies the existence of »,(T) such that for

v < vg(T) (condition ag)
we have

sup | pei (T, v) — puy (T, 0) | < e/ M. (3.16)
kEBE v<vy(T)

The inequalities (3.14) and (3.16) imply

sup | 9ij (T, v) — pyi (T, v) | < 26/M. G17)
REBE,v<vy(T)
Consequently,
2 Ipil' (Tv v)'—'pki(Tv ‘V)‘ < 2. (318)
ke Bt

Comparing (3.9), (3.13), (3.15), and (3.18), we obtain that if ¢, 7, and » satisfy
conditions a,—a,, then

|7 (v) —;(0) | < 10e. (3.19)

The proof of the right continuity of 7(v) at » = 0 becomes complete if we show
there exist T and », > 0 such that for 0 <» <, there is a ¢ depending on » for
which conditions a, — a4 are satisfied. This can be shown easily in the following
way. For the set B® we find T = T(B®) (condition ay), and for T we find numbers
v(T) and »y(T). Set

vi(T)y=min{voe, vaiT). vs(T)}.

Then for any » < »,(T) we take ¢t > max{ty(»), T + t,(v)}, which leads to the
satisfaction of conditions a,-a,.

Now we prove that the continuity of m(») at » = 0 for any j € 4 implies the
satisfaction of condition (A) for {m(»)} at » = 0. The chain L is ergodic. Conse-
quently, for any ¢ > O there is a finite set B* for which

D m,(0)< /2,

ESANBE

3 o (0) > 1 —e/2. (3.20)

keBE

The continuity of m,(») at » = 0 implies that there is a »y such that for |»| <, we
have

max | @, (v) — 7, (0) | < /2M, (3.21)
ke BE
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where M is the number of elements in the set B®. Therefore,

Y I (v) — 2, (0)| < 2, (3.22)
k= BE
> mv<e (3.23)
ke A~ BE

Consequently, {7(»)} satisfies condition (A) at » = 0. The theorem is proved.
§2. Sufficient conditions for the continuity of stationary probabilities

As in §1, let us consider a family {L”} of irreducible aperiodic Markov chains
with transition probabilities p;;(1, ) = p;(») continuously depending on » for
» € D C R' (D is an open set).

The theorems of this section will be formulated in terms of “test” functions.
Later, the continuity of stationary probabilities of random walks in Z", will be
studied by means of the results of the present section.

Assume that on the set 4 = {0, 1, ...} there are given two families f” = { £}
and g” = { g’} (i € A,» € D) of real functions, where

inf fi >0, inf g¥=8>0.

i€d.veD ieA.veD

THEOREM 3.3. Assume that for some finite nonempty set B C A the functions { f}
and { g’} satisfy the following conditions:

L S py W[ —f < —g i€B, veD,

2. S p. (V) f} = A < oo,
up, 31 P} =A< =

i€eB,ve

3. 8" — o0 as i > oo uniformly inv € D.
Then the chains L” are ergodic for every v € D, and the stationary probabilities
7 (v) are continuous in v forv € D andj € A.

ProoF. The ergodicity of L” for every » € D follows from the hypotheses of
Theorem 1.5. We define by induction

Yt =3 p (Vg ghe) - g (v) = £
/=0

It is obvious that y,"(») > 0 for any natural numbers i and n, and any » € D. We
have

y) =Y eV <fi —g =y (v)—gl ieB,
7=0
yf(v)\< ;" IEBv

g (v) = i pii (L, V)55 (v) < lgpu(l, v) £+ 3 pi (1, V) (9, (V) — g7)-
=0 It -

JEB
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Write
= sSu \'; i . = . . .
A'1 iEB.eEDg‘ pis(n, v) I_gpu (n, v)

After easy calculations we obtain
GV <A+ 2)pis(l, v+ 4 (v) — iop,-,- (1, v) g (3:29)
Moreover, the formula -
B <A +A)pis(n—2,v) + 412 () — 20 pi(n—2,vg (25

can be proved easily by induction.
We obtain from the recurrence relation (3.25) that

y0) < GO+ (W 3 pia =3 3% p gy
r= r=1 j=0

0o n
' | v r
2 pij{r. v) g; 2 Pis 42
=i =0 < .U? + (h+ i) = _ y:‘ )
n n n n
AL , N ,
<A < B A, (3:26)

Take i € B. Then

» 2 pij(r. )

2 -—’Ln————g}' <PV +A+2 <2+ A, 3.27)
=0

Take an arbitrary M > 0. Consider the set BM = (i: min, ¢, g”(i) < M}. Since

g~ — oo uniformly in » € D as i — oo, the set BV is finite. Besides, if j € 4 \ BY,

then for any » € D we have g > M. It follows from (3.27) that

A,

g <2+
jeANBM
From this we obtain
n
2 Pij ('! v) . R
=t < Bth (3.28)
n M
jeAN BM

From (3.28) it follows that

n
A}
pij (r. v)
rz‘=l >1— 24 4 by ] (3.29)
n M
jeB"
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We have

Z p;, )
7; (v) = lim r=1

n—-+oo

Therefore, from the finiteness of B and (3.29) it follows that

2 M) > 1 — 2).::).1 ,
jeBM

) < 97-‘+'7-1 . (3.30)
jeAN BM ‘

Since the number M can be chosen arbitrarily large and we can construct the set
B*™ for it, (3.30) implies the compactness of the family {m(»)} of distributions for
v € D, which implies the continuity of 7(») for any j € A and v € D by Theorem
3.2. The theorem is proved.

THEOREM 3.4. Assume that the following conditions are satisfied for some 8§ > 0,
some y > 1, and a finite nonempty set B C A:

3% pu()ff —f! < 8. ieB. veD.

2. 5, 3Py (= < .

3. sup Zpu(v ‘f} _fl P’_Cv<°°
{€EA.vED

4. f¥ — oo uniformly inv € D as i — 0.
Then the chains L® are ergodic for every v € D, and the stationary probabilities
7(v) are continuous in v for v € D and j € A.

PRrOOF. For some y > 1 let condition 3 of Theorem 3.4 be satisfied. Then for any
Yo such that 1 < y, < y we have

sup. EAAML—LW<W 1 < .

(€A, VE

Therefore, without loss of generality we may assume that 1 <y < 2. For any such
v and any y, x > 0 we prove the auxiliary inequality

Y= <ly—xP+ 2y (y —x). (3:31)

Set z = y /x. Inequality (3.31) can be rewritten as
—1l—lz—1lv—y(—1)<0. (3.32)

For the proof of (3.32) we consider two cases.
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1. Let z > 1. Then for z = 1 the left side of (3.32) is equal to zero, and for z > 1
we have

d(2? —1—(z— 1P —y(z—1)
dz

=yl —(— Ip— — 1] < 0.

Consequently, (3.32) is satisfied forz > 1.
2. Let z < 1. Then inequality (3.32) turns into an equality for z = 1, and for
z < 1 we have

42— 11— (1 — 2 —y (2 1))
dz

=yl (1 —2p — 1] >0,

Consequently, (3.32) is satisfied for z < 1, and together with it inequality (3.31) is
also satisfied forany 1 < y < 2andy,x > 0.
Let us use (3.31) to estimate 272, p, ;(VN(S))" — (f7)"] for i & B. We have

Sop,-,- W =T < py UEF =T+ @y (7 — 1))

- -]
1=0

<

hoacd
=

P O =R+ v (07 3 pg 0 (77— 1)

=0
Taking account of conditions 1 and 3 in Theorem 3.4, we finally obtain the
estimate

i Py WY — ()1 < ey —y ()18, (3.33)
/=0

If for some family { f”} of functions the hypotheses of Theorem 3.4 are satisfied,
then they will also be satisfied for the family {f’ + r} = {f*}, where r > 0 is
arbitrary. (The second hypothesis of the theorem will be satisfied with another
constant X, < o0.) Therefore, without loss of generality we may assume that
Y(f?)*"'%8 — ¢, >0 >0 for some o and any i € 4, v € D. Set f7 = (f) and
& = v(f")"'6 — ¢,. Using (3.33) and condition 2 in the theorem, we obtain

G W —Fl < —3g!, ie¢B, veD,

PNz
/=0

3 pI <% < e, i€B, veD.

/=0
Since v > 1, the fact that the f* tend to infinity uniformly as i — oo implies the
same for g7 = y(f7)"~'8 — c,. Hence, for the functions { f7} and { &’} all hypothe-
ses of Theorem 3.3 are satisfied. Consequently, the m,(») are continuous in » for
v € D andj € A. The theorem is proved.

REMARK. Let &, §,, ... be the sequence of random variables corresponding to
the Markov chain L. Let Cbe aset, C C 4 = {0, 1,... }. Fori € C introduce

fic = pl&€C, . . ., E.1¥C, §, €0, =i}
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Then the mean first passage time of the process {§} to the set C under the
condition £, = i is defined by

0

Mt = 2 nf?(;_

n=l1

For any y > 0 we can define the quantity

Mt" = 3 nvfl

Following [18], the property that Mt” is finite will be called y-recurrence of the set
C. As follows from results of [18], the hypotheses of Theorem 3.4 guarantee the
y-recurrence of B, uniformly in » € D. Moreover, it can be shown that the uniform
y-recurrence of the family of chains {L”} with v > 1 implies the continuity of the
stationary probabilities. In this way, we have outlined still another method of proof
of Theorem 3.4.

On the set A = {0, 1,...} let a family of integral-valued, positive, uniformly
bounded functions k” = {k} be given for which

sup Rk =b< .
icA.veD

Concerning the function {f”} already introduced, we assume the following condi-
tion to be satisfied.

BOUNDEDNEss CONDITION. There is a d > 0 such that sup,ep |f —f}1>d
implies that p,(v) = 0.

THEOREM 3.5. Assume that the inequalities

f} pi (R, V) F —F < —e (3.34)
;=0

are satisfied for some € > 0, all v € D, and all i except some finite nonempty set B.
Then the chains L"* are ergodic for every v € D, and the stationary probabilities m(v)
are continuous in v forv € D and j € A.

We precede the proof of the theorem by two lemmas. Let {£§”} be the sequence
of random variables corresponding to L”. We have
i) =P8 =, . . . 8a#) =ik =il
LEMMA 3.2. The functions f;(v) are continuous in v (v € D) for any natural number
nandany i,j € A.

PROOF. We prove the lemma by induction. For n = 1 the function j:.j'(v) = p;(»
is continuous in » for any i and j. Assume that f7(») is continuous in » for any
i,j € A. Use the formula

it ) = i)o Pux ) i (0 — piy (9) £ (90,
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As in Lemma 3.1 of the preceding section, we can prove the uniform convergence
of the series ¢ p (»)f;(v), which consists of continuous functions. This implies
the continuity of f7*'(»).

LEMMA 3.3. Let the hypotheses of Theorem 3.5 be sattsfted Then for any points
io € A and vy € D chosen beforehand there exist functions (k7Y and {f*} such that
SUP;ec4,ep k! = b < o, and the boundedness condition is satisfied for the functions
{f*} with a constant d > 0, and in place of (3.34) the inequality

Sou (=< —
/=0
holds for some e, > 0, all v € D, and all i € A except i = i,

ProoF. Without loss of generality we may set iy = 0. From the assumption that
L™ has a single essential class of states, it follows for any point j € B that there
exist a positive integer r(vo) and €, > 0 such that p;(r(»,), v,) > e,. Since p; An, v)
is a continuous function of » (v € D, and i,j and n are arbitrary), there exists a
neighborhood D; of v, such that p,(7(ve), ¥) > €, = €,/2 for any v € Dj Set

D=n D

; i
JEB

| K ieB, veD,
(A . o
| 7, jeB, veD,
, fi,  i#0, veD,
fI: f(\)'_Q%’ j=0' ’\YED'

where b is defined in the following way:

sup Bi=b< o, d=d+ 2%

/'EA,VED €5

For any i & B U 0 we have
Y p (B, V)Y —Fi<—e (veD). (3.35)
IgA

Fori € B\0and » € D we have

= v = TV 3 v v 2d%b
Z:pl-,-(k,»,v) fr—rF = Z:p.-;(kr, V) — o (R, %) =
2
j=0 j=0

— 1< f{ + dk} — 2db — f! < — db. (3.36)

Hence, if we set £ = min(e, dl;), we finally obtain
D ru (B F —F<—e (veD, i #0). (3.37)
7=0

The proof of the lemma is complete.
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PrOOF OF THEOREM 3.5. The ergodicity of the chains L” (v € D) follows from
Theorem 1.5. Let us fix any point i, € 4. Without loss of generality, let i, = 0. We
prove that 7y(¥) is a continuous function of » for » € D. Take an arbitrary point
o € D. It follows from Lemma 3.3 that we can correct the functions f* and k;” so
that for some nelghborhood D of v, we have (3.37). We may assume that f“’ <f!
for any i € A and v € D, since otherwise this can be achieved easily by decreasing
the values of f2; in this case the inequalities (3.37) are not violated. We introduce
the mean time

my(v) = 21 nfo (v)
of entrance of L” to the null state. It follows from the ergodicity of the chains L’
(v € D) that my(») is finite, and
Ty (v) = lmy (v).

We show that my(») is continuous in » for » € D. As in Theorem 1.6, from the
sequence of random variables §; = 0, £/, ... corresponding to L” we form a
random sequence {S,} by setting S, = f*{£}. From the sequence {£;} we also
form an integral-valued sequence { N} by setting N} = k*(£}) and N/ = NI

k*(¢” ). It follows from the uniform boundedness of the functions K’(i€A,v e
D)that1 < N’,, — N} < bforanyi € A and » € D with probability 1. It follows
from (3.37) that

M(SX/Sx, | >fo) <SX,_ —e (3.38)

with probability 1. We have

fow)=P{EV£0, . . . &V, 50, ¥ =0/ = 0}
=P{SY>Fb . . ., S > S =FuSi=Fi)

Therefore, taking account of (3.38) and applying Lemma 1.2, we obtain the
following estimate for fo(»):

foo(v) < cexp{—8n), ncA, veD. (339

where ¢, § > 0 are constants not depending on ». Taking account of (3.39), we
conclude that the series 27, nfy(»), which consists of continuous functi~as (cf.
Lemma 3.2), converges uniformly in » for » € D. Therefore, the sum n.,.») of the
series is a ccatinuous function of » for » € D, which in turn implies the continuity
of m,(v) in » for » € D. It remains to note that i = 0 and vo € D were chosen
arbitrarily. Therefore, the 7(») are continuous functions of the parameter » for
v € D and any j € A. The proof of the theorem is finished.

§3. Continuity of random walks in Z",
Consider a family {L”} of homogeneous irreducible aperiodic Markov chains
with discrete time and set of states Z7, = {(z}, ..., z,): z; > 0, integral} (» € D,

where D is an open subset of the real line). p,4(¢, ¥) (a, 8 € Z7,) is the probability
of the transition of L” from the point « to the point 8 in ¢ steps.
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Concerning the family {L"} of random walks, we assume that the homogeneity
condition and the boundedness of jumps hold uniformly in » € D. Let Bc‘} be the sets
introduced in §1 of Chapter II.

HoMOGENEITY CONDITION. There is a ¢ > 0 such that for any A, any vector
a=(a,...,a,) witha >0, 1 <i<n,andaj=0forjeA,andallaEBcﬁn
Z", we have

Pap (V) = Pa+ta.p+a (V)

forany B €EZ", andv € D.

BOUNDEDNESS OF JUMPS. For any a the number of B’s such that sup, ¢ p p.g(v) >
0 is finite.

By the homogeneity condition this is equivalent to the following: There exists
d > O such that ||a — BI| > d implies p,g(v) = 0 for any v.

As before, we shall assume that the p,g(1, ») are continuous functions of » for
any a, 8 € Z%, and v € D. For every chain L” let us construct a vector field V" by
the method indicated in §1 of Chapter II. Then we obtain a family { V'*} of vector
fields.

We shall say that the family {V"} (v € Dc D) satisfies condition B if for some
8, b, and p > 0 there is a function fla) (a € R}) which satisfies the following
conditions:

1. fl@)>0, a€R}.
2. fl@)—fB)< blla—Bll forany a, BER].

3. For any A either all the LA(») (v € D) or none of them are ergodic.
4. For any A such that LA(») is ergodic and for A ={1,...,n} and all
a € B* 0 B, we have

sup (f (@ - v¥ (@) — f (@) < — 8.
vED

THEOREM 3.6. If there exists a set U C D such that {V*} (v € U) satisfies
condition B, then for all v € U the chains L’ are ergodic, and the stationary
probabilities m (v) are continuous in v for any a €L, and v € U.

PROOF. Assume that there exist a set U C D and a function fla), @ € R}, such
that condition B is satisfied. Set f* =7, i.e. set f*(a) = f(a) for every a € Z', and
v € U. It follows from the proof of Theorem 3.1 that for any » € U there is a
function m’(a) such that

sup m¥ (&) =m¥* < o
aEz:_

and for all « € Z7,, except some finite set C”,

,;z;,; Pap(m(a), V) f§ — fa < — &, (v) (3.40)
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for some ¢,(v) > 0. From the method of proof of Theorem 2.1 it follows that

sup m¥ < oo,

VEU

inf ¢, (v) >0, (341
vEU

and U, C” is a finite set.

From (3.40) and (3.41) we conclude that all hypotheses of Theorem 3.5 are
satisfied. Consequently, all chains L” are ergodic for » € U, and the stationary
probabilities 7,(») are continuous in » for » € U and any a € Z",. The theorem is
proved.

For a random walk L in Z", where n < 3, in §2 of Chapter II a method was
given for constructing the function f(«) satisfying condition B, which leads to the
formulation of ergodicity conditions in terms of random walks of lower dimen-
sions. Now we prove a theorem showing that the satisfaction of these ergodicity
conditions for the chain L’ guarantees the continuity of the stationary probabili-
ties of {L"} in some neighborhood of »,. We formulate the theorem for random
walks in Z2 . (This can be done analogously for Z', or Z2 )

THEOREM 3.7. Assume that the Markov chain L™, where vy € D, satisfies the
hypotheses of Theorem 2.4 which guarantee the ergodicity of L*. Then there exists a
neighborhood U C D of the point vy such that for all v € U the chains L’ are
ergodic, and the stationary probabilities w,(v) are continuous in v for any a € 7> and
ve U.

Proor. It follows from the proof of Theorem 2.4 that there exists a function fla),
a € R3, which satisfies condition B introduced in §1 of Chapter II. The function
f(a) satisfies the following conditions:

1. f@)>0, acR:.
2. |f@)—fB) <blla—Bl| « BERY,

where b > 0 is a constant. Condition B guarantees the existence of a function
m(a), a € Z3, with values in the set of natural numbers such that

sup m(a) =m< o
aEzi

and for all « € Z3, except some finite set R,

Pap(m (), vo) fg — fa < —& (3.42)
] z?*_
for some ¢ > 0. rrom the homogeneity condition and the boundedness of jumps
for the family of random walks {L”} it follows that p (¢, ) is a continuous
function of » for » € D uniformly in a, 8 € Z> (¢ is an arbitrarily given natural

number). Therefore, taking account of properties 1 and 2 of the function f(a) we
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conclude that there is a neighborhood U of »y such that for all » € U and
a€Z’\B

D) Pap(m(@), V) fo— fa < — /2. (3.43)

pez’

+
From the properties of f(a) and the uniform boundedness of the jumps of the
random walks in {L”} it follows that there is a d > 0 such that sup, ¢ ,|f — f7| >
d implies that p;(v) = 0. Hence all hypotheses of Theorem 3.5 are satisfied.
Consequently, the chains L” are ergodic for all » € U, and the stationary probabil-

ities 7, (») are continuous in » for» € U and any a € 73 . The theorem is proved.

CHAPTER IV. ANALYTICITY OF A FAMILY OF COUNTABLE
MARKOV CHAINS AND RANDOM WALKS
§1. The fundamental analyticity theorem for a
family of countable Markov chains

Consider a family of homogeneous irreducible aperiodic Markov chains {L"}
with discrete time and countable state set 4 = {0, 1,...} and » € D, where D is
some neighborhood of zero on the real line. Let X(A4, Z) be the Banach space of
countably additive real measures on (A4, =) with norm equal to the total variation
(2 is the o-algebra of all subsets of 4). It is easy to see that X(A4, =) = [,(4).

Denote by B(¥) the Banach space of bounded linear operators on X. Any
Markov chain L” on A defines an operator P, € B(X) with norm equal to 1.

DEFINITION. A set M C X(A, Z) is called a set of uniform convergence for the
operator P € B(X) if PM C M and there exist a function @(n), n=1,2,...,
such that

w=g¢w<w @.1)

and an element y € M such that

| Px—yll< o) 4.2)
forall n and x € M.

THEOREM 4.1. Let P, = P(v) depend analytically on v as a function with values in
the Banach algebra B(X) of operators, and assume that the following conditions are
satisfied.

1. For the operator P, there exist two sets M, and M, of uniform convergence such
that M, C M, and inf, ¢ [l x]| > O.

2. There is a vy > O such that P,x € M, for all |v| <vyand any x € M,.

3. There is a v, > O such that

(PV—PO)"!

ERTY

€M,
Jor |v| <v,and any x;, x, € M,.

Then there is a v, > 0 such that for |v| < v, and x € M, the limit lim,_,  P"(»)x
= r(v) exists and depends analytically on v.
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ProoF. For any B € X(A4, 2) and G € B(X) we write

1 Gx B
Gl 0#23 hxi

1t follows from the hypotheses of the theorem that there exist a function ¢(n) and
an element y € M, such that conditions (4.1) and (4.2) are satisfied for any
x EM,

LEMMA 4.1. Under the hypotheses of Theorem 4.1 there is a constant ¢ > 0 such
that

I P5 (Py— Py) llm, < cop(n) 1 Py— Py |I. “43)
ProoF. Take an arbitrary x € M,. Set P,x = z, and Pyx = z,. We have
W P3Py —P) xl =1l P§ 2y —2) | = || Pi (2 4 Py— Py ty — 2,1l Py
— Pyl + @ —2) i <1 Py—Poli || Pi(zz—g) || 4- 0 Py—Py 1
“(z,+",,Tp—l—| < I Py—Pyli () + 1| Py— Py 1l 9(n)
=2.9(n) Il Py—P, |. 4.4)

In the proof of (4.4) we have used the fact that, by assumption, z, = Pyx and
(2, — z))/||P, = Py| belong to the set M, of uniform convergence. Moreover,
using (4.4), we have

”P’(;(P —Po) “h. — sup " Pg(Pv_Pﬂ)x”

=M, fxl

29 (n) || Py, — Py|
= Ihxdl

< c@(n) Il Py— Py .

The lemma is proved.
Let us continue the proof of the theorem. Set

Q=Q()=Py—P, 4.5)
Write

Q(k. [ S T i,)___P‘l)-ng:Q . . .P#Q,

where k > 1, j, >0 (=1, 2,...,k), 8 is the (k + 1)-tuple (k, i, ..., 4), and
0% = 1. Let ry = P®x = lim,_,, PJ(x) (x € M,). The existence and uniqueness
of r, obviously follows from conditions (4.1) and (4.2) for the set M,. We prove that
r, = P,°¢ =lim, P)x exists for all x € M, is unique, and can be represented
in the form

ry= Z;‘Qoro - ,,E, QU frin i) “6)

>
f4sbgeeees 43 >0
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The latter series converges absolutely in ¥(4, =) (r, does not necessarily belong to
M,). It follows from Lemma 4.1 that

I P2Q [lm, < co(m) | Py — P, |. @7

Therefore, the series (4.6) is dominated by the numerical series

So6) . . GNP —Pl+1= 3 (| Py— P, |-cq)*. (4B
L > k=0

The series (4.8) is convergent, provided that ||P, — Py} < 1/cep. Consequently, the
series (4.6) converges absolutely. Now we prove equality (4.6). For this we estimate
the difference

The following equality is obvious:

(Po+ Q)" =Pi+ P 'Q+ Py 7QPy+ . . .+ Pi*QpPit!
+ .= QP e L L 4.9)

}6] Q*PF — (P, + Q)"

M,

Therefore

“ z]QGP:—(Po +Q"l < k§ I Q@I P — Pyt I

[1+ig+-~-+(k<n/2

S A1V FR N PP I P

i,+i:+...+ik>n,'2 n>i,+...+ik>nl2 i1+"‘+ik<"/2

X QA —iy—iy— . . —i) L2 ; el
1
“+"’+‘k>'I/2

< ‘Z} I@letn—i— . . .—ip+ 3 &I

it +ip<n/2 t,+.k.<.+;;/§n/2
+ 2 QU< max om3 (17— P20
n>m>n'2 =0

&k>¥V n/2
Gt /2

+2 2 Q@) . . @)t Py—p, |

k<Vnp2
‘|+":+---+‘k>"/2
2 i) .. @) P, —P, |t
+2 0 3 e .. 9@ IP—PI < max om)
‘|+‘:+-..+i.>’l/?
xgqm—aum‘# Y e .. @A —P I
k= R<Y ny?
i.+i,+...+ik>n/‘1
+ 2 U Py—P, o). (4.10)

k>V nJ2
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The first and third sums on the right side of (4.10) converge to zero as n — oo
because the series (4.8) is convergent and ¢(n) converges to zero as n — co. Every
term of the second sum contains a factor ¢(m) with m > Vn/2 . Therefore, the
second sum is dominated by the sum

2max @(m) D) | Py—Pylicw),
m>Vnaj2 A<Ynfd
which converges to zero as n — oo. Thus (4.6) is proved.

It has remained to prove the analyticity of the vector 7, = lim,_, , P)'x (x € M,).
The absolute convergence of (4.6) implies the analyticity of r, in Q for || Q|| smaller
than some g, The quantity Q is an analytic function of » for » € D. Therefore
there is a », such that for |»| < », we have ||Q,|| < g,, which implies the analyticity
of r, in » for |»| < »,. The theorem is proved

As the theorem just proved shows, for the proof of the analyticity of the Markov
chain family we have to construct sets M of uniform convergence for the operator
P,. An important class of Markov chains is the class of chains with exponential
convergence (cf. [6], §27.3). Recall that a Markov chain has exponential conver-
gence if there exist a set function f(S) and positive constants a, b > 0 such that

| " (x, S)— P(S)| < aexp{— bn}

for sufficiently large » and any x and S. Any Markov chain with a finite set of
states satisfies the condition of exponential convergence. In [5] and [6] conditions
are given for the exponential convergence of countable Markov chains. For
Markov chains with exponential convergence, as a set M of uniform convergence
we may take the whole set of probability measures in the space ¥(4, X). Therefore,
for a family {L”} of Markov chains with exponential convergence the analyticity
of the operator P, implies that of the stationary probabilities.

However, the Markov chains which are the most interesting in practice do not
satisfy the condition of exponential convergence or even weaker conditions. For
example, it is easy to show that for a birth and death process with a reflecting
barrier at zero, i.e. a Markov proces with state set Z!, and transition probabilities
Pii-y=p and p, ;.. =1 — p, the set M (the whole set of probability measures)
does not have the property of uniform convergence for any function ¢(n).

In the next section we give a method of constructing a set of uniform conver-
gence for a class of Markov chains on which certain conditions are imposed in
terms of “test” functions. These conditions are in particular satisfied for random
walks in Z%,.

§2. Analyticity conditions for a family of Markov chains in terms of
“test” functions
Let us consider the same family {L”}, v € D, of Markov chains on the set
A={0,1,...} as in the preceding section. Assume that on 4 a family of real
functions f” = {f”} and a family of integral-valued positive functions k* = {k}
(i € A, v € D) are given with the following properties:
I. inf fi>0, sup Dk}’ =b< oo,

i€A, v&b €A, ve
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2. For any fixed b, > 0 the series 22, exp{ —b, f7} converges uniformly in
veED.

2'. Condition 2 is satisfied if there exist ¢, y > 0 such that J§ >ci” for any
Yy € D.

3. Thereis ad > O such that | f — f7| > d implies that p, (v) = 0 (v € D).

As before, p; (1, v) is the t-step transition probability from the point i to the point
Jin L%,

THEOREM 4.2. Let the operator P, defined by L” depend analytically on v for
v € D. Assume that there exist n and § > 0 such that for any i € A andj € V, =
{J: sup,ep p;i(v) > 0} the inequality

P(n, 0)>8 4.11)

holds and

P = <—e @.12)
=0

Jor some ¢ >0, all v € D, and all i except some finite nonenpty set B. Then the
chains L*® are ergodic for every v € D, and the stationary probabilities m(v) are
analytic in v for |v| smaller than some vy and for any j € A.

ProoF. The ergodicity of the chains L” and the continuity of the stationary
probabilities 7(v) (j € 4; v € D) follow from Theorem 3.5. Let &g, £, . . . be the
sequence of the random variables corresponding to L”. We introduce

i) =Pl& #j, @2#j, ... b, =it =il
Py =PE #k Ak ..., Dok B ==
kP;j (v) = S.j] 77 (V).

In Theorem 3.5 the estimate

foo (v) < ¢, exp{—b,n} 4.13)
is proved for some ¢,, 8, > 0 and any n € 4 and v € D. We can prove that
oPoj < crexp{—dn}. 4.14)

in an entirely analogous way. For convenience, we divide the proof of the theorem
into a series of lemmas.

LEMMA 4.2. The inequality
7, (V) < csexp {—8ofi]) @4.15)
holds for some c,, 8, > O and any i € A andv € D.

Proor. For the irreducible aperiodic recurrent chain L” we have (cf. [1] or [8])
pij (n. v)
I]m ..'.lz_.__.— = ‘-P“‘ (‘V)_ (4.16)

m-»20 m
Pii(n. v)
n=
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For an ergodic chain this becomes

n (V) .

2y = P ). @.17)
Consequently

7y (v) < gpp; (V), (4.18)

(1
0P (v) = 21 oP5 (¥) = ﬁoﬂa,- (v) + ?_: Sh(v). @19
- = n=[171]

The first sum on the right side of (4.19) is equal to zero. This follows from the
hypothesis of Theorem 3. Using (4.14), we obtain that there exist constants [
8, > 0 such that

[2:1/ ]opgi (v) < coexp | —8,fY). (4.20)
n= l d

Thus Lemma 4.2 is proved.
LEMMA 4.3. There exist constants c5, 8; > 0 such that
| Poo (1, ¥v)— 75 (v) | < cyexp{— byn} (4.21)
forany n € A and v € D.

ProOF. We introduce the generating functions

Fi@ =S fme, @22)
n=0
Pli(2) = io pii(n, v) 2" 4.23)

Using the relation

pu(n, V) = 3 [ ) patn—s, )

s=1

for the generating functions, we obtain

1 .
Pli(2d) = ———— orfor i=0
11() l-—-F}"(z)
v 1
) =—-——o., 4.24
00() l-—F}';o(z) ( )

It follows from (4.13) that F§(z) is analytic in z for |z] < 1 — o, for some ¢ > 0
and any » € D. Besides, |Fj(z)| < 1 for |z| = 1, z # 1, since the greatest common
divisor k such that f%(») # 0 is 1. There exists a neighborhood U of z = 1 such
that in it Fl(z) = 1 only for z = 1; therefore for some o, > 0 the equation

() — 1 =0 has no more roots for |z| <1+ g,. Consequently Py(z) =
1/(1 — Fg(2)) is a meromorphic function for |z] < 1 + 0,, and z = 1 is its only
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pole of first order (cf. [19], p. 237). The residue of Pyy(z) at z = 1 is equal to

1 z—1 1

res Py, (2) = res = lim = —lim ————
2=l 2=l | on (2 2=l 1 — F¥. (2) 21 1 —F3, (2
1—2
1 1 v
P = — = -— .
dFgo (2) 5-:\ _r
dz  |z= = foo (v)-n

~

Then Pgo(z) = Pgo(z) — 75 /(1 — z) is holomorphic for |z| < 1 + &,. On the other
hand, since

PY (o) = ffo (Poo (1, V) — 1) 2",

=
we conclude from this that there exist constants c;, §; > 0 such that
| Poo (7, ¥) — 75 (v) | < cyexp{— 8yn}.
The lemma is proved.
LeMMA 4.4. There exist constants o, ¢4 8, > 0, such that
| Pio(n, ¥) — 75 (v) | < cqexp{—b,n} (4.25)
forany v € D,i € A, and n > of’.

Proor. Using Lemma 1.2, we obtain analogously to (4.13) that there exist
constants b,, a;, 6, > 0, such that

fio(v) < b, exp{—a,-n} (4.26)
forany v € D,i € A and n > o, - f’. We have

Pa(r, V) = 3V /15" () pog (7, W) @27

r=l

It follows from (4.27) that

n

| Pio(, V) —m(V) | <3 | Poo(ry V) —7g(¥) | -fia” (V) + 7, ﬁ fio(¥).
r=1 r=n+1
(4.28)

Take 6 > 0/, and let n > of. We estimate the right side of (4.28).
1. Let r < gn, where (1 — &) > 0,. Then (n — r) > (1 — ¢)n > o, f". There-
fore, using (4.26), we obtain
fro” (v) < byexp{—a,(n — )} < b,-exp{—a,(1 —e&;) n}.

2. Now let r > ¢;n. Then Lemma 2 implies that

[ Poo (r, ¥v) — 1y (v) | < cyexp{— 8yr} < cyexp{— 8e,n}.
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Combining both cases, we obtain

n
3 1 Poo(r, V) — 7 (¥) | fis" (v) < nby exp {—ayn} (4.29)
r=1
for any n > of” and some b,, a, > 0. It follows from (4.26) that
1y 3 fro (v) < by-exp{—ayn}. (4.30)
r=n-+1

It follows from (4.29) and (4.30) that there exist constants c,, 8, > 0, such that
(4.25) is satisfied for any » € D, i € A4, and n > of]. The lemma is proved.

LeMMA 4.5. There exist constants o,, cs, 85 > 0, such that
| By (n, v)— 5, () | <czexp{—by) (4.31)
Joranyv € D,i,j € Aand n > o, f.

PrOOF. We have

Py (n, v) = 2 Puar, ) B35 (%) + o83, ), @32

| oy, W — 1, ) | = |

zjl (Pio (F, %) — 7, () o577 (¥)

—7% | oPh; o (V)

< 2 | Pio(r, ¥v)— 7,(V) |, o,Tr(V)
r=}
+ T N opg (V) T ol (V). (4.33)
r=r41
Using Lemma 4.4 and (4.14), as in Lemma 4.4, we can obtain (4.31) from (4.33).

LEMMA 4.6. There exist constants 0,, ¢g, 8¢ > 0 such that
31 pii V) — 7, (v) | < cqexp{—8yn) (4.39)
=0
forany v €ED,i,jE Aandn > o,f.
PROOF. We have

;olpu(n, v)— ;v ] = 2 | pijin, v) —a;(v) |

J Y >V 3 nd
/ i

-+ 2 | pij(n, v)— a;(v)|. 4.35)

PP <FY+ nd
i {

The boundedness of the jumps of the random walks implies that the first sum on
the right side of (4.35) is equal to zero. It follows from Lemma 4.5 that each term of
the second sum is less than csexp{ — 8sn}, whenever n > o, f’. Let M” be equal to
the number of those j for which

ff <F +nd. (4.36)
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Let j satisfy (4.36). Then
o < ff < F +nd,
<[ ) <[ ()] = [ ()]
Consequently,

MY < n”vbl, “4.37)
where

Hence

[pijln, vy —m,(v) | < n'’ bye, exp {—8gn).
PHY<FY + nd
[

Therefore, there exist constants o,, c5, 8 > 0 such that

2“ | pij(n, ¥v)—m;(v) | < cqexp {— G4n}
j=0

whenever n > o, f/. The lemma is proved.

LemMA 4.7. There exist constants 8,, ¢;, 05 > 0 such that

E E | pij(n, v) — 7;(v) | < agff + c; exp{— &fi] (4.38)

n=| [-=0
forany v € Dandi € A.

PrOOF. We have
) le.-,-m. V)= Y Em,nv)—n(v)l

"/Uz’v 1=0
2 ZJ ‘pll(n V) ﬂl-(V) lv (439)
4 n>0,fY = 0
;’5 | pey(n, V) — () | < 2 (4.40)
=0

for any i, n € A. Therefore, the first sum on the right side of (4.39) is less than
20, f’. We estimate the second sum on the right side of (4.39), using Lemma 4.6.
Then we obtain

Yy Elp,,m V1, | < D) ceexp{— e} < c, exp{—8ifY)

n: n>o.f" =0 n:n>0,- f‘ (4.41)

for some ¢, 8, > 0. Combining the estimates thus obtained for the first and second
sums on the right side of (4.39), we obtain the assertion of the lemma.
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Now we begin the actual proof of Theorem 4.2. For some a > 1 we introduce
the set

Ma=:(xo, Xy o 0 oy Xp x| < om0y 2 X; = l} 4.42)

We prove that M, is a set of uniform convergence for the operator P(0) corre-
sponding to the Markov chain L% We prove that POM, C M, Let x=
(Xgp Xpp -+ .5 X,) €E M. Set

P(O)X: =(yov Y « ¢ v Yp « ')’

471 = |3 Ps0x | < 33 ;O (0) = o, 0)

Besides, 272y, = L,y € M. Set

Pn = sup|| P (O)x — () || . (4.43)
We have
xseug,z 2 Py (n, 0)'-" O)I— 2 2 I(plj(n 0) —=;(0))

uMa

S0
<) |
3eM 0

FAODECIES s ﬁ | Piy(n, 0)—m,(0) ],

(4.49)
nz_31¢n< “,.2:. ;;” n,<0>g|p,,<n, 0)— 1, (0) |
=a Eo n, (0) Ex g | pis(n, 0)— 7, (0) | (4.45)

To estimate the series (4.45) we use Lemmas 4.2 and 4.7. We have

3 0u<a P e~ oSl (ol +aep =) @40
=0

n=]

It follows from (4.46) that there exist constants a, and b, such that

2 ¢, <a 2 exp {—byfi*}. (447)
The convergence of the series (4.47) follows from condition 2 of Theorem 4.2. By
the same token, we have shown that M, is a set of uniform convergence for the
operator P(0).

Take a; < a, and sets M, and M, of uniform convergence for the operator P(0)
such that M, C M, . Take x = (x},x,,...) € M,. We have 3P x, =1 and
x; € a;m(0). Set y=(y;, 5y ...)= P(»)x, where y, I_op,j(v)x We have
25 y; = 1, since P, is a Markov operator. The probability p;(v) is different from
zero only for j € ¥V, (the set V; is defined in the hypothesis of the theorem). It
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follows from (4.11) that there is a constant @ > 0 such that for all points j € V. we
have

>} 1 (0)<an(0)
Ievy
for any i € A. Therefore

lg ] < i Pii (V)| x| < f pii(v)am;(0) < azm; (0), (4.48)
=0 j=0

It follows from (4.48) that if aa, < a,, then y € M,, and condition 2 of Theorem
4.1 is satisfied by the same token.
Let x', x> € M, . We show then there exists v, such that

(PV“PO)Xz

z=x'4+-—"——— €M,
IPy—Pyl =7
for |v| <, where z = (zy, z, .. .). It is obvious that & z; = 1. We show that
|z;l < aym(0). We have
l (s
- (v) — p; : 4.49
el Ll g | 3 a0 — @y G

Since P;(v) and p;(0) are different from zero only for j € V,, and, as we have
already shown, there exists an a> 0 such that for all points j € ¥, and any i € 4
we have 2. 7,(0) < am(0), it follows that

1 )
, Z; , < alni(o) + ” pv_ P, ” ln;?/f ’ Piji (V) — Pt (0) I
X 2 a,7;(0) < aym, (0) + ajam; (0) = n, (0) a, (1 + a).
=3 F;

Setting a, > a;(1 + a), we obtain that z M, . By the same token, the hypotheses
of Theorem 4.1 are satisfied. This in turn implies the analyticity of the stationary
probabilities. The theorem is proved.

§3. Analyticity of random walks in Z",

Consider a family {L”} of homogeneous irreducible aperiodic Markov chains
with discrete time and set of states Z7, = {(z, ..., z,): z; > 0, integral} (» € D,
where D is an open subset of the real line).

We shall assume that the homogeneity condition and the condition of bounded-
ness of jumps introduced in §3 of Chapter III are satisfied. Besides, we assume that
there exist n, § > 0 such that for any » € D, «a €Z7, and B € V,, where
Vy = {B: sup,ep Pp(¥) > 0}, we have

qu(n: V)>6,

As in §3 of Chapter III, we introduce the family { V"*} of vector fields.
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THEOREM 4.3. Assume that the operator P, defined by the chain L’ depends on v
analytically for v € D. If there exists a set U C D such that the Jamily {V"}, v €
D, of vector fields satisfies condition B (see §3 of Chapter 111), then the chains L" are
ergodic for all v € U, and the stationary probabilities 7,(v) are analytic in v for any
a €2 andv e U.

PROOF. As in §3 of Chapter III, condition B implies the existence of a function
f(a), v € D, which satisfies (4.12). Besides, the families of functions {k’} and
{f7} satisfy conditions 1, 2, and 3 imposed on them in Theorem 4.2. Inequality
(4.11) is satisfied by assumption. Hence, all hypotheses of Theorem 4.2 are
satisfied, which leads to the analyticity of =, (») for a € Z, andve U c D.

For random walk families {L"} in Z",, where n < 3, the analyticity conditions
for the stationary probabilities can be formulated explicitly, since we have suc-
ceeded in constructing a function f(a) satisfying condition B for the family {L”}.
Let us formulate this theorem for walks in Z3 .

THEOREM 4.4. Assume that the Markov chain L’°, where vy € D, satisfies the
hypotheses of Theorem 2.4 guaranteeing the ergodicity of L*. Moreover, assume that
the operator P, depends analytically on v for v € D. Then there is a neighborhood U
of vo (U C D) such that the chains L" are ergodic for all v € U, and the stationary
probabilities w,(v) are analytic in v for any « € 2>, and v € U.

The proof of this theorem is completely analogous to that of Theorem 3.7, and
we shall not include it here.

Received 23/APR /76
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